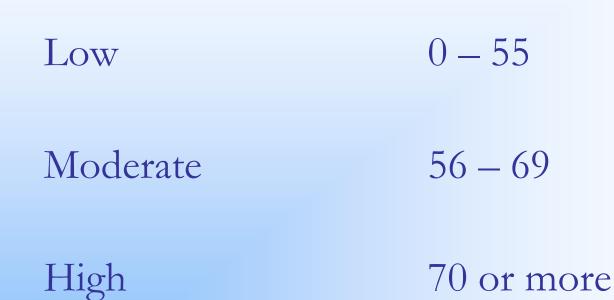

Practical Use of the Glycemic Index

Introduction


Let's discuss:

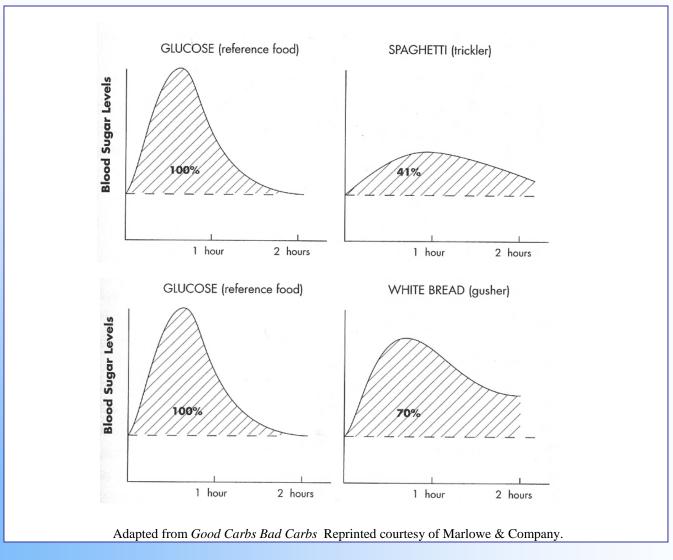
- Glycemic Index
- Glycemic Load
- Health Benefits
- What to Eat
- Case Study
- Hands-on Activities




What is the glycemic index?

A scale that ranks carbohydrates by how much they raise blood glucose levels compared to a reference food.

Glycemic Index (GI): Ranking



Glycemic Index (GI): Protocol

- 1. 25 or 50 grams carbohydrate of test food. 2. Blood samples taken: 1st hour: every 15 minutes 2nd hour: every 30 minutes 3rd hour: every 30 minutes * 3. Values plotted; AUC calculated. 4. Test food response compared to reference food response.
 - 5. Average GI of 8-10 volunteers = GI of test food.

Glycemic Index (GI): Sample Graphs

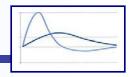
• Type of starch

Type of Starch

Amylose

- Absorbs *less* water
- Molecules form *tight clumps*
- Slower rate of digestion

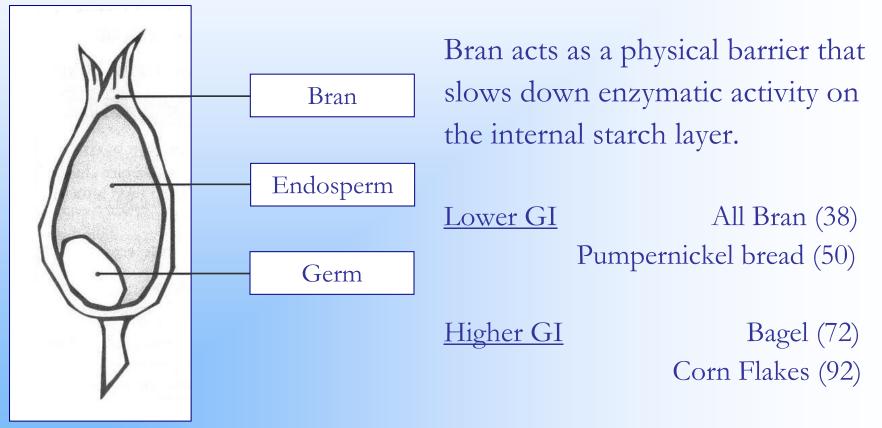
Lower GI


Kidney beans (28) Uncle Ben's converted LG rice (50)

Amylopectin

- Absorbs *more* water
- Molecules are more open
- Faster rate of digestion

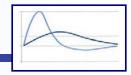
Higher GI


Russet potato (85) Glutinous rice (98)

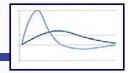
- Type of starch
- Physical entrapment

Physical Entrapment

- Type of starch
- Physical entrapment
- Viscosity of fiber


Viscosity of Fiber

Viscous, soluble fibers transform intestinal contents into gel-like matter that slows down enzymatic activity on starch.


Lower GI

Higher GI

Apple (40) Rolled oats (51) Whole wheat bread (73) Cheerios (74)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content

Sugar Content

 $sugar \Rightarrow sucrose \Rightarrow glucose + fructose$ $(GI 60) \quad (GI 100) \quad (GI 19)$ $starch \Rightarrow maltose \Rightarrow glucose + glucose$ $(GI 105) \quad (GI 100) \quad (GI 100)$

Lower GI

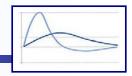

Higher GI

Frosted Flakes (55) Raisin Bran (61)

Golden Grahams (71) Rice Krispies (82)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content

Fat & Protein Content


Fat and protein slow down gastric emptying, and thus, slows down digestion of starch.

Lower GI

Higher GI

Peanut M&M's (33) Potato chips (54) Special K (69)

Jelly beans (78) Baked potato (85) Corn Flakes (92)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content
- Acid content

Acid Content

Acid slows down gastric emptying, and thus, slows down the digestion of starch.

Lower GI

Higher GI

Sourdough wheat bread (54)

Wonder white bread (73)

- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content
- Acid content
- Food processing

Food Processing

Highly processed foods require less digestive processing.

Lower GI

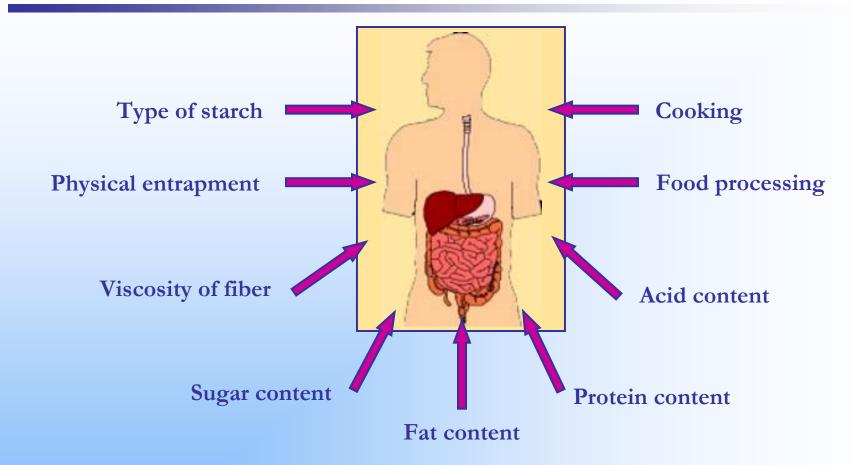
Higher GI

Old fashioned, rolled oats (51)

Quick, 1-minute oats (66)

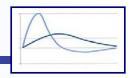
- Type of starch
- Physical entrapment
- Viscosity of fiber
- Sugar content
- Fat and protein content
- Acid content
- Food processing
- Cooking

Cooking


Cooking swells starch molecules and softens foods, which speeds up the rate of digestion.

Lower GI

Higher GI


Al dente spaghetti – boiled 10 to 15 minutes (44) Over-cooked spaghetti – boiled 20 minutes (64)

How does all this affect our glycemic levels?

How does all this make us feel after eating carbohydrate-containing foods?


Glycemic Load (GL): What does it mean?

Glycemic load measures the degree of glycemic response and insulin demand produced by a specific amount of a specific food.

Glycemic load reflects both the quality and the quantity of dietary carbohydrates.

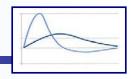
GL = GI/100 x CHO (grams) per serving

Example: GL of an apple = 40/100 \times 15g = 6g


Glycemic Load (GL): Calculation

1/2 cup converted, LG rice	$38/100 \ge 22g = 8g$	
----------------------------	-----------------------	--

 $1/2 \operatorname{cup} \operatorname{glutinous} \operatorname{rice} \qquad 98/100 \ge 29 \operatorname{g} = 28 \operatorname{g}$


 $2 \frac{1}{4} \text{ Tbsp glutinous rice} \qquad 98/100 \text{ x } 8\text{g} = 8 \text{ g}$

1 2/3 cups converted, LG rice $38/100 \times 73g = 28 \text{ g}$

Glycemic Load (GL): Ranking

Individual food	l portion:	
L	OW	0-10
\mathbf{N}	[oderate	11-19
Н	ligh	20+
Whole day:		
L	ow	< 80
\mathbf{M}	loderate	100
H	ligh	> 120

GI vs. GL

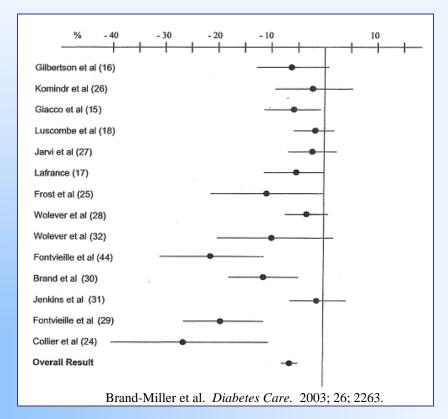
Glycemic Index:ranks carbohydrates based on
their immediate blood glucoseI = glycemic quality

Glycemic Load:


helps predict blood glucose response to specific amount of specific carbohydrate food.

_ quality

→ quantity


GL = glycemic

Low GI diet helps lower blood glucose levels.

Meta-analysis of 14 studies, 356 subjects (types 1 & 2 DM), 2-52 weeks duration

Mean difference

- 7.4% in glycated proteins *over & above* reduction from high GI diet.
- 0.43% points in HbA1c *over & above* reduction from high GI diet

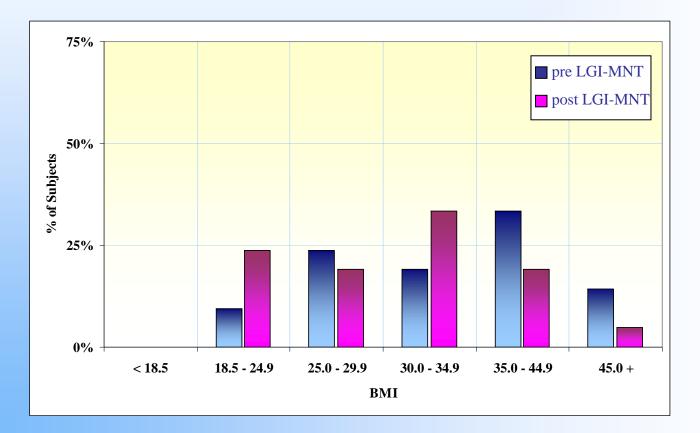
 Δ

Low GI diet helps lower blood glucose levels.

EURODIAB IDDM Complications Study, 1996 2,054 people, 15-60 y, with type 1 DM

	GI	HbA1c
Lowest quartile	58-78	6.04
Highest quartile	86-112	6.60

Low GI diet aids in weight control.


Nurses' Health Study, 1984-1996 74,091 women, 38-63 y

Calculated odds ratios (lowest > highest quintiles)

	BMI (≥30)	Major weight gain
	n = 6,400	(≥25kg) n = 657
Whole grains	-19%	-23%
Refined grains	+18%	+26%
Dietary fiber	-34%	-49%

Low GI diet aids in weight control. Post low GI MNT counseling, 21 subjects, 21-89 y, 3-36 mos.

Burani & Longo. Diabetes Educ. 2006; 32; 83.

Low GI diet decreases risk of diabetes.

Nurses' Health Study, 1986-1992 65,173 US women 40-65 y, free of DM 6 year follow-up: 915 cases of type 2 DM

	Relative risk
Î GI	1.37
Î GL	1.47
î cereal fiber	0.72
	2.50
	Salmeron et al. JAMA. 1997: 277: 472

Low GI diet decreases risk of diabetes.

Health Professionals' Follow-up Study, 1986-1992 42,759 US men 40-75 y, free of DM 6 year follow-up: 523 cases of type 2 DM

	Relative risk
Ĵ GI	1.37
î cereal fiber	0.70
	2.17

Salmeron et al. Diabetes Care. 1997; 20; 245.

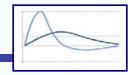
What Should I Eat?

http://www.mypyramid.gov

What Should I Eat?

2005 Dietary Guidelines

- Balance calories in with calories out.
- Eat balanced diet with variety of nutrient-dense foods and beverages.
- Consume 2 cups fruit, 2¹/₂ cups vegetables per day. (2,000 calories intake)
- Choose whole grains for at least half of daily grain consumption.
- Consume 3 cups FF/LF milk or equivalent.
- Keep fat consumption 20-35% of daily calories. (mono & polyunsaturated)
- Consume less than 2300 mg sodium/day.
- Choose foods with little added sugar or caloric sweeteners.
- Drink alcohol in moderation.
- Practice food safety handling and preparing rules.

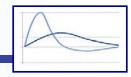


Do not focus exclusively on achieving a low glycemic load diet with all low glycemic index food choices.

Result could be:

high fat low carbohydrate low fiber calorically dense

Instead...

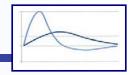


A Better Idea

Aim for a well-balanced diet that includes low glycemic index carbohydrates. Use glycemic load as a guide for controlling portions.

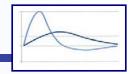
Hint:

Low GI CHOs allow for larger portions, while regulating the GL. High GI CHOs require smaller portions to regulate the GL.



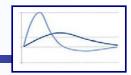
GI = 60 GL = 48

GI = 42 GL = 31



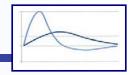
GI = 85 GL = 48

GI = 39 GL = 22



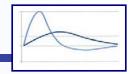
GI = 83 GL = 19

GI = 14 GL = 1



GI = 80 GL = 32

GI = 61 GL = 12



GI = 57 GL = 31

GI = 32 GL = 16

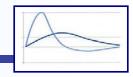
Eat high-fiber breakfast cereals (oats, bran, barley)

OR


Add berries, nuts, flaxseed and cinnamon to high GI cereals.

Choose dense, *whole* grain and sourdough breads and crackers.

OR


Add a heart-healthy protein and/or condiment to high GI breads and crackers.

Include 5-9 servings of fruits and vegetables every day.

OR

No ifs, ands or buts – just do it! (Mom was right.)

Replace white potatoes with yams or sweet potatoes.

OR

Try canned new potatoes, or just eat smaller portion of high GI potatoes.

Eat less refined sugars and convenience foods (soda, sweets, desserts, etc.)

OR

Combine nuts, fruit, yogurt, ice cream with commercial sweets – just watch portion sizes.

38 YO administrative assistant Married, no children Height: 5'7" Weight: 320 lbs. BMI: 50 (severe obesity) Type 2 DM since age 35 A1c: 6.3 (Glucophage 500 mg) BP: 148/90 (Altace 10 mg)

Case Study – Amy's *Before* **Diet**

Breakfast:	toasted bagel with cream cheese, 16 oz. orange juice, large
	coffee with whole milk
Lunch:	6" roast beef & cheese sub sandwich w/ mayo, 20 oz. diet
	Pepsi
Snack:	("all afternoon long") 13 oz. bag Hershey miniature
	chocolate bars
Dinner:	$\frac{1}{2}$ box macaroni & cheese (made w/ 2% milk), 3 beef hot
	dogs on buns, water
Snack:	1 ¹ / ₂ cups ice cream


6250 Kcal: 43% CHO (666g), 11% PRO (173g), 46% fat (321g) GI = 57 (moderate) GL = 352 (very high)

Case Study – Amy's After Diet

Breakfast:	2 slices 100% WW toast, 1 Tbsp natural, NSA peanut butter, 1 Tbsp all-fruit jelly, 1 cup fresh strawberries, large coffee w/ skim milk
Lunch:	4 oz. grilled chicken breast, large green salad with varied
Lunch.	+ 02. grinted enteken breast, large green salad with varied
	fresh vegetables & 2 Tbsp vinaigrette dressing, small boiled
	sweet potato, orange, diet iced tea
Snack:	6 oz. light yogurt, ¹ / ₂ cup cherries (frozen)
Dinner:	4 oz. grilled salmon w/ lemon juice, 1 cup pasta w/ 1 cup
	broccoli rabe, 1 Tbsp olive oil, water
Snack:	apple
2150 Kc	al: 47% CHO (251g), 19% PRO (104g), 34% fat (82g)

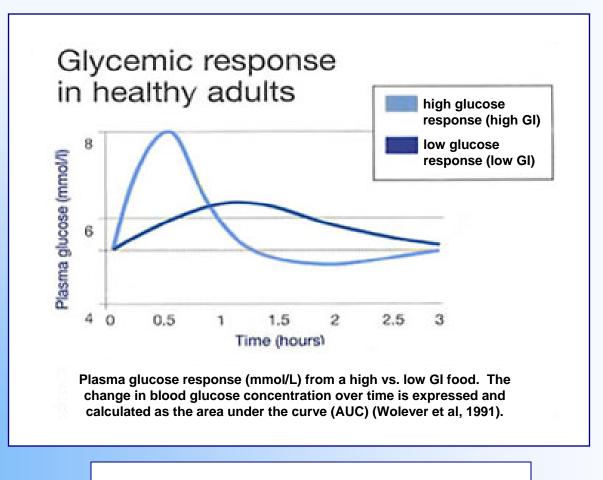
2150 Kcal: 47% CHO (251g), 19% PRO (104g), 34% fat (82g) GI = 39 (low) GL = 61 (low)

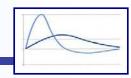
Case Study – "Amy"

3 years later

Weight: 205 lbs BMI: 32 (mild obesity) A1c: 5.2 BP: 120/60, RHR 47 Medications: none.

Patient Empowerment Model


The patient makes self-directed, informed decisions about personal behavioral changes.


Practitioner's Empowerment Model

The practitioner makes self-directed, informed decisions about professional educational changes.

www.glycemicindex.com

Thank You!

